

Generators, Light Towers, Compressors, and Heaters

Used Compressors Fullerton - Air compressors are valuable equipment that transfers power into potential energy which is stored in pressurized air. These units use electric, diesel or gas motors to force air into a storing tank to increase the pressure. Once the tank reaches its' upper limit, the air compressor turns off, as the compressed air is held into the tank until needed. Compressed air is utilized in a variety of industries. Once the kinetic energy in the air tank is used up, the tank undergoes depressurization. The pressurization restarts after the air compressor turns on again, which is triggered after the lower limit is reached. **Positive Displacement Air Compressors** There are multiple methods for air compression. These methods are divided into positive-displacement or roto-dynamic categories. In the positive-displacement method, air compressors force the air into a space with decreased volume and this compresses the air. Once the ultimate pressure is found, a port or valve opens to discharge the air from the compression chamber into the outlet system. **Vane Compressors, Rotary Screw Compressors, and Piston-Type** are popular kinds of positive-displacement compressors. **Dynamic Displacement Air Compressors** Centrifugal air compressors, along with axial compressors fall under the dynamic displacement air compressor category. A rotating component discharges its' kinetic energy and it eventually converts into pressure energy. A spinning impeller generates centrifugal force, accelerating and decelerating contained air, creating pressurization. Air compressors create heat and need a method to dispose of the heat, typically with some kind of water or air cooling mechanism.

Atmospheric changes are also taken into consideration during compressor cooling. Inlet temperature, the area of application, the power available from the compressor and the ambient temperature are all factors the equipment must take into consideration. **Air Compressor Applications** Numerous industries rely on air compressors. For example, supplying clean air at moderate pressure to a diver that is supplied for surface submersion, supplying clean air of high-pressurization to fill gas cylinders and supplying pneumatic HVAC controls with moderately pressurized clean air to power pneumatic tools including jackhammers and filling up high-pressure air tanks to fill vehicle tires. There are many industrial applications that rely on moderate air pressure.

Types of Air Compressors The vast majority of air compressors are either the rotary screw kind, the rotary vane type or the reciprocating piston model. These air compressor models are utilized for portable and smaller applications. **Air Compressor Pumps** Two of the main kinds of air-compressor pumps include oil-injected and oil-less kinds. The oil-free model depends on technical items; however, it costs more and lasts less than oil-lubed models. Overall, the oil-less system is considered to deliver higher quality.

Power Sources There are a variety of power sources that can be used alongside air compressors. Electric, gas and diesel-powered models are the most popular; although, other models have been engineered to use hydraulic ports, power-take-off or vehicle engines that are often utilized in mobile applications. Diesel and gas-powered models are often chosen for remote locations that offer limited access to electricity. These models are quite loud and require proper ventilation for their exhaust. Electric-powered air compressors are common in workshops, garages, production facilities and warehouses where electricity is abundant.

Rotary-Screw Compressor One of the most popular air compressors available is the rotary-screw model. This gas compressor requires a rotary type positive-displacement mechanism. These units are commonly used in industrial settings to replace piston compressors for jobs that require high-pressure air. High-power air tools and impact wrenches are popular. Gas compression of a rotary-screw model features a sweeping, continuous motion, allowing minimal pulsation which is common in piston model compressors and may cause a less desirable flow surge. In the rotary-screw model, compressors rely on rotors to compress the gas. Dry-running rotary-screw models use timing gears. These components are responsible to make sure the female and male rotors operate in perfect alignment. Lubricating oil fills the space between the rotors in oil flooded rotary-screw models. This design creates a hydraulic seal and transfers mechanical energy in between the rotors simultaneously. Starting at the suction area, gas moves through the threads as the screws rotate. This makes

the gas pass through the compressor and leaves through the ends of the screws. Success and overall effectiveness rely on specific clearances being achieved between the sealing chamber of the compression cavities, the rotors and the helical rotors. High speeds and rotation are utilized to achieve harmony and minimize the ratio of leaky flow rate vs. effective flow rate. Many applications including food processing plants, automated manufacturing facilities and other industrial job sites rely on rotary-screw compressors. Other than fixed models, there are mobile units in tow behind trailers that run on diesel engines. Also known as “construction compressors,” portable compression systems are popular for sandblasting, industrial paint systems, construction crews, pneumatic pumps, riveting tools and more. Scroll Compressor A scroll compressor is used to compress refrigerant. The scroll compressors are popular in air-conditioning equipment, supercharging vehicles and vacuum pumps. A variety of air conditioning systems, residential heat pumps and a variety of automotive air conditioner utilize a scroll compressor in place of wobble-plate, reciprocating and traditional rotary compressors. This machine has dual inter-leaving scrolls that complete the pumping, compressing and pressurizing fluids such as liquids and gases. As one of the scrolls is often fixed, the other scroll eccentrically orbits with zero rotation. This action traps and pumps or compresses fluid between the two scrolls. Compression motion may be achieved by co-rotating the scrolls synchronously with their centers of rotation offset to create a similar motion to orbiting. Acting like a peristaltic pump, the Archimedean spiral is contained within flexible tubing variations’ similar to a tube of toothpaste. Lubricant-rich casings stop exterior abrasion from occurring. The lubricant additionally helps to dispel heat. With zero moving items coming into contact with the fluid, the peristaltic pump is an inexpensive solution. Having no seals, glands or valves keeps this equipment easy to operate and quite inexpensive in maintenance. In comparison to other pump units, the hose or tube feature is very inexpensive.